
1 | P a g e

Investigation into modular design within computer games.

By Scott Jones

BSc (Hons) Computer Games Design

A project submitted in partial fulfilment of the award of the

degree of BSc(Hons) Science from Staffordshire University

Supervised by Stuart Butler

May 2011

Faculty of Computing, Engineering and Technology

Aprox Word Count 13000

2 | P a g e

Abstract

Computer games are ever increasingly becoming more detailed, however this detail is limited by two

factors, time to create the higher detail and also the limitations of computer hardware.

One way to overcome this is by using modular assets to build the games levels from, this research

paper looks into how modular assets could potentially help to solve those issues.

The goal of the paper is to find out just how beneficial a modular scene is in comparison to a non-

modular scene testing performance to see how much more detail can be pushed and also workflow

to find out if time can be saved to be able to put the extra detail in.

3 | P a g e

Content

1. Introduction 5

2. Research 7

 2.1 Modularity 7

 2.1.1 What is modularity 7

 2.2 Benefits of Modularity 7

 2.2.1 Workflow benefits 7

 2.2.2 Performance benefits 12

 2.3 History of modularity 18

 2.4 Modularity outside of game development 21

 2.5 Current use of modular design 22

 2.6 When and where to use modular assets 30

 2.7 Methods of modular creation 31

 нΦтΦм 9ǇƛŎΩǎ ¦5b 31

 2.7.2 Paul Madar 33

 2.7.3 Lee Perry 34

 2.7.4 Tyler Wanlass 35

 2.7.5 Chris Robson 40

 2.8 Section 2 brief conclusion 41

3. Practical Example and Testing 42

 3.1 Planning 42

 3.1.1 3ds max planning 42

 3.1.2 Implementation of Planning objects 44

3.2 Modular asset creation 45

 3.2.1 Creating assets in 3ds max 45

4 | P a g e

Content

 3.3 UDK Level construction 49

 3.4 Unwrapping and texturing 58

 3.5 Research practical support 61

 3.5.1 Test Planning 61

 3.5.2 Testing Method 61

 3.5.3 Testing results 61

4. Conclusion and Recommendations 65

5. References 67

5 | P a g e

1 Introduction

This paper will be focusing on the use and implementation of modular assets within computer

games, with the end goal of taking the knowledge researched to produce a game-ready level using

modular assets.

Modular level design within computer games is already a popular method of creating interactive

environments, this can be clearly seen in such games as the Unreal Tournament© series, Mass

Effect© series and Halo© series amongst many more, these mentioned games have sold over a

million units each based upon VGcharts (2011) with them all using modular design throughout their

games.

Fig1.

6 | P a g e

Fig2.

The reason games such as the above use modular assets are because there are many benefits in

doing so, these include but not limited to performance increases, production time reductions and

the fundamental way assets are created, these are the main areas of research and discussion that

will be presented within the paper however there are many other reasons that will be mentioned

throughout to hopefully give a complete and clear insight into level modularity.

Along with these benefits there are some problems using modular assets relating to workflow and

visual aesthetics Eipc games (2011) Perry (2011), these will also be discussed to give a fair

representation to different methods and ideas.

The aim is to provide an understanding of the full effects of modularity, where and when to use

them and also in what circumstances they should be avoided.

To accompany the research covered in the document a practical example will be demonstrated to

ǾŜǊƛŦȅ ǘƘŜ ǊŜǎŜŀǊŎƘΣ ǘƘƛǎ ŜȄŀƳǇƭŜ ǿƛƭƭ ōŜ ŎƻƴŘǳŎǘŜŘ ƛƴ 9ǇƛŎ DŀƳŜǎΩ ¦5Y ŀƴŘ ŀƭǎƻ ǳǎƛƴƎ !ǳǘƻŘŜǎƪΩǎ

3ds Max and !ŘƻōŜΩǎ tƘƻǘƻǎƘƻǇ ŦƻǊ ŎƻƴǘŜƴǘ ŎǊŜŀǘƛƻƴΦ

7 | P a g e

2 Research

2.1 Modularity

2.1.1 What is modularity?

Epic games defines modularity as (2011):

Ȱmodular design is concerned with making lots of high-quality chunks of levels and reusing those

chunks intelligentlyȱ

The word modular itself comes from the word module which is defined by oxford university press as
(2011)

Ȱeach of a set of standardized parts or independent units that can be used to construct a more
complex structure, such as an item of furniture oÒ Á ÂÕÉÌÄÉÎÇȢȱ

In relation to games, modularity is about the creation of an asset that can be used repeatedly with

itself or another modular asset. There are many factors that make an asset modular some of which

do not always apply to every circumstance, in section 2.7 different artists methods and views on

modularity are discussed.

2.2 Benefits of modularity

There are many beneficial aspects of modularity, this section will cover the main pros and cons of

modularity in the different stages of game production and also what effect it has on a game itself.

2.2.1 Workflow benefits

As modularity is the process of re-using the same high detail assets it means that a minimum of only
one asset is needed for modularity to work and could potentially be used to make a vast
environment, while this may not be visually appealing it does mean that less time is needed in the
production of assets for such a level due to the actual quantity of work needed compared to an
environment that is populated with multiple unique assets.
If modularity is not taken to such an extreme, in many cases ƛǘΩǎ still faster to produce a modular

level compared to that of level made from unique assets of the same quality and detail, Perry argues

(2002)

Ȱ4ÈÅ ÍÏÄÕÌÁÒ ÌÅÖÅÌ ÄÅÓÉÇÎ ÓÏÌÕÔÉÏÎ ÁÒÏÓÅ ÆÒÏm the need to have great-looking, high-detail levels

×ÉÔÈÏÕÔ ÈÁÖÉÎÇ ÔÏ ÂÕÉÌÄ ÁÎÄ ÔÅØÔÕÒÅ ÅÖÅÒÙ ÎÏÏË ÁÎÄ ÃÒÁÎÎÙ ÏÆ ÔÈÅ ÅÎÖÉÒÏÎÍÅÎÔȱ and also goes on

to say ȰÍÏÄÅÌÌÉÎÇ and texturing an entire level at extremely high detail levels can result in many

months if ×ÏÒË ÔÈÁÔ ÍÁÙ ÅÎÄ ÕÐ ÎÅÅÄÉÎÇ ÓÉÇÎÉÆÉÃÁÎÔ ÒÅÔÏÏÌÉÎÇȱ

However in some cases this may not be true as Epic states (2011)

Ȱ)Æ ÙÏÕ ÁÒÅ ÊÕÓÔ ÍÁËÉÎÇ ÏÎÅ ÒÏÏÍȟ ÔÈÅÎ Á ÎÏÎ-modular room may be much faster to create than

mÁËÉÎÇ ÓÅÐÁÒÁÔÅ ÐÉÅÃÅÓȢȱ

While this case will be rarer due to the fact most games do not solely focus on only one room or

small unique environments, this may still come up from time to time.

8 | P a g e

On the same note there are also issues relating to the constant re-use of the same asset, Epic games

(2011) explains one such problem

Ȱ! ÍÁÊÏÒ ÃÏÎÃÅÒÎ ×ÉÔÈ ÍÁËÉÎÇ ÍÏÄÕÌÁÒ ÐÉÅÃÅÓ ÉÓ ÔÈÅ ÆÅÁÒ ÔÈÁÔ ÔÈÅ ÐÌÁÙÅÒ ×ÉÌÌ ÂÅ ÁÂÌÅ to see the re-

ÕÓÅ ÏÆ ÔÈÅ ÃÈÕÎËÓȱ

This is an inherent problem as this is the nature of modular assets. Epic games (2011) suggests using

unique attributes (lighting, decals, elevation etc.) to overcome this issue.

In short anything that will stop an area looking repetitive fixes the situation, normally easy to

overcome and is fixed in the process of making a normal level as things such as lights solve this issue

and lights are in almost every game in some form or other. Examples of methods to overcome these

problems will be given in the practical section of the document to determine how much of an effect

this can have

Epic games have examples of these methods within their level DM-Deck in UDK, below are renders

from this level to demonstrate these techniques in use.

In this render Epic have used props to add variation to the section

Fig 3.

9 | P a g e

The Render below demonstrates how lighting has been used to give the illusion that the corridor is

not made up of the same pieces.

Fig 4.

Below is the same scene with no lighting information, ƛǘΩǎ a lot clearer to see that the same object

has been used repeatedly.

Fig 5.

10 | P a g e

In the same level they also use height to give the level a unique feeling, the walls and the floor are

the same mesh in both areas, the lighting adds some difference along with props, however the areas

read different because of height too.

If a player changes height they know they are going to a new location, instead, if the player goes

through a series of paths and come to an area that is similar looking depending on the paths it may

seem as if they have been there before and possibly causing confusion.

Fig 6.

These are just a few ways to overcome the issue of repetitiveness within a level.

Another issue to consider when creating modular assets is the workflow of the team, changing the

way a level is made will also impact the way the projectΩs team will work, an example of this is given

by Epic games (2011)

ȰBecause the work is now solidly split between artists and level designers, there may be additional

layers of communication that need to be establishedȱ

Aspects of this could be seen as a beneficial and also problematic.

The benefƛǘΩǎ the fact that the work is now split between the two teams, it means that both teams

can be working on the same area of a level at the same time as each other, this allows things as

gameplay testing, object interaction and other processes outside of the art department to continue

while the art assets are worked upon, then placing the assets in the appropriate places within the

level once completed, speeding the development process up.

However on the other hand, the additional communication between the two teams may cause some

issues, an example of this is could be seen if the understanding between the two teams falls apart, it

11 | P a g e

may mean that something is done wrong such as the level designers needing an object to be a

specific size, if this is not communicated well to the art team then the asset may need to be redone

to fit with the other pieces of the level, creating more work and slowing the development down. Epic

games (2011)

Due to the way modularity works, if an object needs changing, it can be done at any point with little

effort. Once an artist has update that modular asset, when re-imported into the games engine, it

updates all instances of that asset automatically, potentially saving a lot of effort and time.

A by-product of modularity is the potential is for a level designer to be able use assets that where

perhaps not originally intended for a specific use, such as a pillar that has been turned into a

doorway. Due to the assets looking similar to each other in style this method of level design

ǎƘƻǳƭŘƴΩǘ ǎtand out and look odd and gives the level designer a lot of creativity, this method could

possibly solve the issue of repetitiveness in some cases.

Fig 9.

12 | P a g e

2.2.2 Performance benefits.

This section is aimed to clarify and help better understand how important and beneficial modular

assets are in regards to performance

There are possibly huge performance gains to be had with a modular design, by using the same

objects multiple times but in different locations, a computer system can re-use the original object for

all the other instances throughout the level, this is often overlooked and the focus goes on the

workflow more than the performance, tests will be conducted to determine how much of a

performance boost a level could possibly have through the use of modularity.

Computer Hardware processes 3d assets through the use of graphics processors, early nVidia

graphics cards took advantage of instancing, a process of using the same asset in multiple places,

allowing the system to load the asset into memory once and render it multiple times increasing

performance, while this paper is covering a different area of research, modularity uses the

instancing system and so is still a vital part of the

subject.

nVidia has been a world leader in graphics processing

unitǎ όƘŜǊŜ ƻƴ ƛƴ ǊŜŦŜǊǊŜŘ ǘƻ ΨDt¦Ωύ ŦƻǊ Ƴŀƴȅ ȅŜŀǊǎ ƴƻǿΣ

often leading the market with ATI/AMD and Intel with

their graphics hardware. Below are hardware sales

figures of the PC graphics hardware market provided by

guru3d.com who has published Jon Peddie Research

statistics (Q3 2010).
 Fig .10

Vendor Q3 2009 Q2 2010 Q3 2010

AMD 20.1% 25.0% 22.3%

Intel 53.6% 53.4% 55.6%

Nvidia 25.3% 20.7% 21.2%

IƻǿŜǾŜǊ Ƴƻǎǘ Dt¦Ωǎ ǳǎŜ ǘƘŜ ǎŀƳŜ ǎȅǎǘŜƳǎ ŀƴŘ ǿƻǊƪ ŀƭƳƻǎǘ ŜȄŀŎǘƭȅ ǘƘŜ ǎŀƳŜ and not dependent

on manufacturer, the only difference that effects games development is the amount of data being

calculated at any given time and possibly how specific types of data is used as well. With this in mind

modular level design can be implemented on almost any computer device, be it a personal

computer, games console or even mobile devices.

13 | P a g e

To help better explain the graphics pipeline and how instancing works a diagram provided by nVidia

below on how the graphics pipeline works.

Fig 11

The above diagram shows that the rendering pipeline all starts at the system memory, data is then

sent to the CPU, from here the data is then split into two pipelines running simultaneously,

geometry and textures, similarly in this way Instancing can be split into these two sections also, the

way these two are handled in a game is down to the actual engine rather than the hardware, the

hardware gives the potential use of these features only, however as instancing amongst other things

have been around for a long time and is built into DirectX and OpenGL (these are programing

libraries that enable direct use of hardware features) these features are normally similar in use from

engine to engine as most engines will want to take advantage of the power of the GPU.

Everything at some point on screen and off has to go through the CPU, these are referred to batches,

ƳƻŘŜǊƴ /t¦Ωǎ Ŏŀƴ ƘŀƴŘƭŜ ŀōƻǳǘ мллΣллл ōŀǘŎƘŜǎ ǇŜǊ ǎŜŎƻƴŘ, each object, texture and the other

mechanics that are used in games engines are potentially a single batch each. To solve this objects

are grouped together and stored as such in the system memory. GPU gems 2 (2005)

When objects are batched together they increase the memory usage as the assets are merged

together, this helps performance in frame rate as the GPU can handle large vertex counts and frees

up CPU, UDN (2011) Wloka (2003)

14 | P a g e

Instances of the same mesh though could possibly not take up any more memory in comparison to

non-batched items as the mesh still can be sent as 1 object to the GPU with its custom attributes

such as position, scale and rotation sent separately. Rege (2004)

Fig 12

15 | P a g e

Similarly textures also go through the same process, each texture is sent to the CPU to be told to be

handled by the GPU essentially, each texture is again a separate batch, so to help textures can be

put into ΨatlasesΩ, smaller maps combined into one large one, this is handled by the game engine

itself and something that artists ŘƻƴΩǘ ƘŀǾŜ ǘƻ particularly worry about but ƛǘΩǎ something to keep in

mind.

Fig 13

As this is the same process as batching of the same 3D model together, the same can be done to

textures, this in terms of performance extends further than just freeing up CPU time to also include

freeing up more random access memory (here on in referred to as RAM) on the system and/or GPU

memory. If a texture is used 5 times in one scene, each at 2mb each theoretically that quickly eats

16 | P a g e

up 10mb of RAM where as if the same texture is used just once for all 5 objects, that still equates to

only 2mb a huge saving of 80% in memory usage over just 5 objects.

To test this theory demo test was conducted to confirm this above research into performance gains,

a simple scene that used a singular asset was created, this asset was then instanced 1000 times in

the level and a FPS and memory usage reading was taken, the scene registered at 43 FPS with 2.7 mb

of static mesh memory used.

The same scene was then created in 3DS max duplicating the asset 1000 times to the same location

as they were in the first test level and then exported as sets into singular asset. These where then

imported into the UDK level replacing the instanced assets and then ran the test again.

This time the frame rate was 39 FPS and the memory usage was 106 mb, this means that in this

demo there was an increase of 12% in performance and a 3962% reduction in memory usage

Looking at the statistics, it can be seen that the engine is automatically set up to take full advantage

of these features, allowing the designer to place the same object multiple times with only storing the

object once in the asset package, the same is true with textures as well along with other types of

assets.

Understanding these powerful features of how modern GPUs handle game environments can start

to give a clearer and more precise understand of how modularity can benefit game design when

relating to performance.

if an artist is able to make a level in a modular fashion, where more of the same asset can be added

to the world, could potentially only be adding a little extra cost in hardware usage, this enables the

game designer more freedom when developing highly detailed levels as they are able to add more

assets making for a more richer environment for the player to experience. ²ƘŀǘΩǎ ƳƻǊŜ ƛǎ ǘƘƛǎ

technique can benefit almost any genre of game and gives some understanding to why it has been

popular with games developers in the past.

With benefits to several key aspects of game design modularity is extremely powerful, however

what has not been mentioned so far is the main drawbacks of modularity, while these may be

considered by some to be less of a drawback and more of a way of thinking, the creation of the

assets require a different way of construction to work as intended in comparison to making a single,

unique standalone asset.

 It may be the case that an art team may need to be taught how to create assets in a modular way

adding time and cost to a project, though these techniques can be used over multiple projects so the

cost of training may not be as high as one would typically think. Section 2.7 will cover techniques

used to create modular assets.

A month after this test was conducted a new graphics card was installed, this upgraded the system

the test was running from an nVidia 9800 GX2, an old top range card that had built in SLI (multiple

graphics cards working together) to a modern nVidia GTX 570, to confirm the test above and also to

get more data the test was run again. Surprisingly this time the statistics had changed even though

the same level was used, the memory usage was the same however the FPS was higher in the non-

instanced test.

17 | P a g e

To better understand what is going on different hardware settings where applied, overclocking both

the CPU and GPU and then underclocking them too and finally a mixture of the two together.

The results of the tests are as follows

CPU GPU None Instanced Instanced

+28% +15% 117 fps 96 fps

+28% +0% 115 fps 94 fps

+28 -23% 92 fps 83 FPS

+0% +15% 119 fps 89 fps

+0% +0% 117 fps 86 fps

+0% -23% 90 fps 79 fps

-33% +15% 116 fps 72 fps

-33% +0% 112 fps 69 fps

-33% -23% 94 fps 67 fps

In each instance of the test, the non-modular scene had better frame rate, this was highly

unexpected.

More research into the subject and a better understanding was obtained, according to nVidia and

their Games Developer Conference talkers, along with their books they state that performance

should be increased, however as epic stated that a batched system would take up more memory

further research was done into UDK. From several posts made on the official UDK forums it appears

that instancing is not fully supported within the engine, it takes advantage of the main memory

savings, however it uses an un-batched rendering system, this would explain why the results above

are like they are.

As such, a new testing plan was implemented, this time a scene was made again from 500 assets in a

instanced level, however for the un-instanced test, each object was imported as a singular asset,

having 500 unique assets replacing the instanced scene, this then tested modularity within UDK

without the results being influenced by other factors such as CPU power. Wilson, A UDN official

moderator agreed this would be a good way to test modularity.

18 | P a g e

2.3 History of modularity.
Ȱ4he modular level design solution arose from the need to have great looking, high-detail levels without

having to build and texture very nook and cranny of the environmentȱ Perry (2002)

Modularity has been around for a long time now, even back on the Nintendo entertainment system

in 2D games such as aŀǊƛƻ ŀƴŘ ŀƭǎƻ {ŜƎŀΩǎ {ƻƴƛŎ ǳǎŜŘ ŀ ƳƻŘǳƭŀǊ ŘŜǎƛƎƴΦ

1. Clouds

2. Enemy creature

3. Block floor, repeated along the length of

the map

4.Solid colour block, each block repeated to

create steps

5. Background large grass mound

6. Medium grass mound

7. Small Grass mound

7a. Small grass mound, possibly repeated

and layered

8. Castle, repeated without the flag

9. Floating block

10. Pipe top

11. Pipe Length

Fig 14

Taking a look at the first level of Mario every asset is used several times throughout the level,

breaking it down into its unique objects, the most re-used is the floor block, its used as the floor

ǘƘǊƻǳƎƘƻǳǘ ǘƘŜ ƭŜǾŜƭΣ ǘƘŜ ƻƴƭȅ ǘƛƳŜ ƛǘΩǎ ƴƻǘ ǳǎŜŘ ƛǎ ǿƘen there is a gap in the floor. Along with the

floor there are also other interactive objects in the level that are re-used, the pipes, though different

sizes use the same material, it also only uses 5 different blocks throughout in different arrangements

however the level looks unique throughout. On top of the interactive objects the background objects

are also re-used throughout the level, while these are single objects that are randomly placed it still

uses the concept of modularity.

19 | P a g e

20 | P a g e

Fig 15 ς 19

Similarly the sonic worlds also use a modular design to their levels, this is newer than the Mario level

from above and as such uses a bit more complex segments, looking at the overview of the level the

ground uses all the same texture/asset throughout, occasionally scaling to fit a better size when

required, the trees are also highly modulated throughout the level, however the main difference

between Mario and Sonic is the complexity of the levels, Sonics levels are layered on top of each

other and also contain some complex shapes for paths that can be followed, joining up at different

heights, fitting together nicely due to their modular nature.

This trend of using modular design continued into 3D level design and is now used in most modern

games like those mentioned at the beginning.

21 | P a g e

2.4 Modularity outside of game development.

Modularity is not just limited to computer games, there are many uses indifferent industries, looking

at some of these areas outside of games may help to get a better idea where modularity can be

beneficial within computer games.

One large area that modularity is used within is the film industry, mainly in sci-fi TV shows and films,

such as star trek and star wars, where it would be impossible and impractical to build compete full

size sets of everywhere when a lot of the places look the same, so instead re-use stages for different

locations, changing small things to fool the viewer that they are filming in a new location. This

method also brings down the cost of resources that are needed as the set can potentially be small

and thus not much material is used in construction, it also brings down the size of building needed to

fit the set in.

Another area that has a lot of modularity within it is the way some houses are constructed, these are

pre-fabricated modular houses and have many benefits too, type of these are called Huf

Haus

Fig20

Unlike regular buildings these are pre-made in a factory following a set design and constructed

offsite, disassembled and reassembled on site taking only a few days to fully construct a house with

all fittings and furniture included, the house owner can choose from a variety of fittings all designed

to work and fit in the house. As such the house can be customised and personalised quickly and

efficiently with no drawbacks due to modularity, bringing the average price down. McCloud, Grand

Designs (2003)

¢ƘŜǊŜ ƛǎƴΩǘ ǘƻƻ ƳǳŎƘ ǘƘŀǘ Ŏŀƴ ōŜ ŀǇǇƭƛŜŘ ǘƻ ƎŀƳŜǎ ŦǊƻƳ ǘƘƛǎ ǎŜŎǘƛƻƴΣ ǘƘŜ Ƴƻǎǘ ōŜƴŜŦƛŎƛŀƭ Ƙƛƴǘ ǘƘŀǘ

could applied is the way star trek produce their sets and the ways they make each section different,

otherwise this only confirms the benefits of modularity, that it does increase speed and productivity,

reducing cost.

22 | P a g e

2.5 Current use of modular design.

Far from the 2D levels of Mario and sonic are the full, high detailed 3d worlds that people now come

to expect from modern games, UDK uses a highly modular approach to levels.

When opening up a level from UDK it only loads a few new packages, this is a system that stores all
relevant assets for a level in a singular file, each level is typically split up into multiple packages, with
this system the game engine only loads the specific files that are needed to be able to view or play
the level in question. For this example DM-Deck has been loaded into the UDK editor.

The quickest way to tell that the level uses a lot of modularity is by looking at the level stats, UDK
has many tools to show different statistics that may be helpful to a games designer, looking at the
level in question there are 4093 primitives in the level, comparing this to the list of unique items ƛǘΩǎ
clear that there are a lot less than the figure
above.

Fig 21

To look at how much the level has been created through the use of modular assets, the primitives

can be ordered by count, this is the amount of times that unique primitive has been used in the

level, once ordered it states that the static mesh

ά{ǘŀǘƛŎaŜǎƘϥ[¢ψ.ǳƛƭŘƛƴƎǎнΦ{aΦaŜǎƘΦ{ψ[¢ψ.ǳƛƭŘƛƴƎǎψ{aψ.ǳƴƪŜǊ{ǳǇ!мέ ƛǎ the most instanced item

in the current level (382 times), all of these assets can be selected at once by double clicking on the

asset stat line.

Fig 22

Going back to the level editor and looking around the asset in question is now selected and
highlighted in blue, this particular asset is a concrete pillar and has been used in a lot of different
locations, yet still looks visually appealing.

23 | P a g e

Fig 23

Even though they are exactly the same as each other, because of the way they are used the level

ŘƻŜǎƴΩǘ ƭƻƻƪ ǘƻƻ repetitive, this has been achieved by making assets ƭƻƻƪ ƭƛƪŜ ƛǘ ōŜƭƻƴƎǎ ǿƛǘƘ ŀ Ψset

ǘȅǇŜΩ ƻŦ ŎƻƴǎǘǊǳŎǘƛƻƴ ƛƴ ǘƘƛǎ ƛƴǎǘŀƴŎŜ ŀ ǎŎƛ-fi style set.

Like the TV show star trek a lot of the props have a similar feel and style as each other, they all look

like they were created with each other in mind.

Fig 24

24 | P a g e

Fig 25

Fig 26

Where it differs from Mario and sonic is they use the fact that they are also designed to modulate in

more than just a 2D plane for the environment games used to be limited to, instead they are

designed so that they can be rotated in a 3D world, allowing them to also be modular in the depth

axis too.

What is also important to note is the surrounding objects, these are not always the same as each

other, this breaks up the repetitive nature of modularity and creates a scene that looks unique

throughout, sometimes this is not important however in a lot of cases it is, the normal case when

making a level for any given game is to make it feel realistic and keep the player engaged at the task

at hand, if the scene was continuously the same throughout, repeating the same little bit over and

25 | P a g e

over again probably would not be very visually appealing, making what could be an exciting game

ǾŜǊȅ ōƻǊƛƴƎ ŀƴŘ ŘǳƭƭΣ ƛǘ ŀƭǎƻ ŘƻŜǎƴΩǘ ƎƛǾŜ ŀ ƴŀǘǳǊŀƭ ŦŜŜƭ ǘƻ ǘƘŜ ƭŜǾŜƭ ŘǳŜ ǘƻ the fact, nothing is exactly

the same in reality.

One type of game that this may not be true for is car racing games or simulators, as the environment

ƛǎ ƴƻǊƳŀƭƭȅ ƳƻǾƛƴƎ Ǉŀǎǘ ǘƘŜ ǇƭŀȅŜǊ ŀǘ ŀ Ŧŀǎǘ ǇŀŎŜΣ ƛǘΩǎ Ƴƻǎǘ ƭƛƪŜƭȅ ǘƘŜ ŎŀǎŜ ǘƘŀǘ ǘƘŜȅ ǿƛƭƭ ƴƻǘ ƴƻǘƛŎŜ ǘƘŜ

repetitiveness of assets in the level, instead the only concern for this genre of game is having an

appropriate asset in the environment as the player would then notice if it was not there. Epic also

picked up on this too.

Ȱ)Æ ÙÏÕÒ ÐÌÁÙÅÒ ×ÉÌÌ ÂÅ ÒÕÓÈÉÎÇ ÐÁÓÔ ÔÈÅ ÐÉÅÃÅÓ ɉÁÓ ÉÎ Á ÒÁÃÉÎÇ ÇÁÍÅɊȟ ÔÈÅÎ ÙÏÕ ÃÁÎ ÁÆÆÏÒÄ ÔÏ ÍÁËÅ ÌÁÒÇÅÒȟ ÌÅÓÓ

ÄÅÔÁÉÌÅÄ ÃÈÕÎËÓȱ

Another prominent feature of the techniques used in UDK is the fact that the assets cut into each

ƻǘƘŜǊ ŀƴŘ ŘƻƴΩǘ ƴŜŎŜǎǎŀǊƛƭȅ ǇŜǊŦŜŎǘƭȅ ŀƭƛƎƴ ǿƛǘƘ ŜŀŎƘ ƻǘƘŜǊΦ

The following renders from the level demonstrate this method in different areas and locations

throughout the map

Fig 27

Above is a render from the level with several assets selected to demonstrate the amount of

intersection and yet there are no graphical errors neither does it look out of place

26 | P a g e

Here there are a lot of intersecting objects, they are placed around to add detail to the map, due to

theǎŜ ŀǎǎŜǘǎ ōŜƛƴƎ ǳǎŜŘ ǘƘǊƻǳƎƘƻǳǘ ǘƘŜ ƭŜǾŜƭ ƛǘ ŘƻŜǎƴΩǘ ŀŘŘ ŀƴȅ ƳƻǊŜ ǿƻǊƪ ŦƻǊ ǘƘŜ ŀǊǘƛǎǘ ǘƻ Řƻ ŀƴŘ

can be quickly done by the level designer

Fig 28

Below assets are intersecting through the entire wall to add detail to an otherwise simple plain

wall

 Fig 29

27 | P a g e

In the render below are the assets that are cutting through the wall, they are a lot bigger and go a

fair distance into the wall however this is not noticeable to the player and causes no rendering issues

and as such is a cheap way to add detail.

Fig 30

¦5Y ƛǎ ƴƻǘ ǘƘŜ ƻƴƭȅ ƎŀƳŜ ǘƘŀǘ ǳǎŜǎ ƳƻŘǳƭŀǊƛǘȅΣ ŀǎ ƳŜƴǘƛƻƴŜŘ ŀǘ ǘƘŜ ōŜƎƛƴƴƛƴƎ aƛŎǊƻǎƻŦǘΩǎ Iŀƭƻ ŀƴŘ

.ƛƻ²ŀǊŜΩǎ aŀǎǎǎ 9ŦŦŜŎǘ ŀƳƻƴƎǎǘ ƻǘƘŜǊ ƎŀƳŜǎ ŀƭǎƻ ǳǎŜ ƳƻŘǳƭŀǊƛǘȅΦ

Fig 31

28 | P a g e

Mass effect is a game where the repetitiveness of modularity is well hidden and not too noticeable,

ǘƘƛǎ ƛǎ Ƴŀƛƴƭȅ ŘǳŜ ǘƻ ƳƻǊŜ ǳƴƛǉǳŜ ŀǎǎŜǘǎΣ ƘƻǿŜǾŜǊ ƛǘΩǎ ŀƭǎƻ ǘƘŜ ǎǘǊŀǘŜƎƛŎ Ǉƻǎƛǘƛƻƴ ƻŦ ǘƘŜ ƳƻŘǳƭŀǊ

assets and their shapes to give a feel that the level is not repetitive, some of the trees are used

multiple times, some scaled and rotated so from any one angle they do not look the same, the use of

steps are also modular, joined up with the floor neatly along with the large support structures.

When it comes to multiplayer levels its normally the case the level needs to be balanced for each

team, in halo 3 the level designers have used modularity to their advantage for creating their

multiplayer maps, mirroring half the level to form the opposite side, due to modularity both ends fit

nicely together to form a complete map, within each side modular assets are used extensively to

create the bulk of the environment, some of these are highlighted in the images below, colour co-

ordinated to demonstrate the possibility that they are the same asset

Fig 32

29 | P a g e

Fig 33

Fig 34

30 | P a g e

2.6 When and where to use modular assets
As stated previously, modularity is a powerful method of level designing and has a wide range of

uses in almost all games, so when is the best place to use modularity.

Due to evidence reported in this document, there are more benefits to modularity than

disadvantages and in short ƛǘΩǎ easier to state when not to use it.

So where is modularity not appropriate? Well the most obvious is where performance is not an

issue and where it would be quicker for an artist to create unique assets. Epic Games (2011) gives a

good example of an inappropriate time to use modularity.

ȰIf you are just making one room, then a non-modular room may be much faster to create than

making separate pieces. Once that number grows to 100 rooms, however, you'll understand the time

ÓÁÖÉÎÇÓ ÔÈÁÔ ÃÁÎ ÒÅÓÕÌÔ ×ÈÅÎ ÙÏÕ ÁÄÏÐÔ ÔÈÅÓÅ ÐÒÁÃÔÉÃÅÓȱ

However this is partially true, if this room is part of a larger level and is supposed to look different

from the rest of the game or alternatively for some reason a singular room is required for an entire

level, then this may be true because it may be hard to use existing assets to give a unique feeling, so

it may be quicker to make the room out of unique assets, but if the room is part of a level or looks

similar to another room within the game, modularity is still an option, it may be the case that a mix

of unique and modular assets could be combined to create such a room.

Other situations that may determine how modular a level is will be down to how much time the

player will be spending in that particular environment, similar to the racing example in section 2.5, if

the player is not spending too long in the area, the artist can make large modular pieces, that may

not be too modular in nature, an example may be there could be a building for each module, these

put together to make a town that the player may pass through quickly, these in a sense are only

partially modular as they will not fit together like previous examples however having streets to

separate them they become somewhat modular. So modular can be worked on in different scales

depending on the situation. The following statement from Epic Games should help understand what

size of modularity is best for different situations.

ȰIf you'll be spending a lot of time in an environment, then a smaller scale of modularity with more

complicated pieces is called for. For comparison, imagine a town that one would fly over in a

helicopter, as opposed to the interior of a spaceship that you wander about it. In both of these cases,

the use of mÏÄÕÌÁÒ ÍÅÓÈÅÓ ÃÁÎ ÓÐÅÅÄ ÕÐ ÔÈÅ ÄÅÖÅÌÏÐÍÅÎÔ ÏÆ Á ÇÁÍÅ ÃÏÎÓÉÄÅÒÁÂÌÙȢȱ

31 | P a g e

2.7 Methods of modular creation.

This section covers different methods of modular asset creation within the industry, examples are
taken from different sources all within the games industry.

нΦтΦм 9ǇƛŎΩǎ ¦5b (2011) on modularity
hƴ 9ǇƛŎΩǎ ¦5b ǿŜōǎƛǘŜ ǘƘŜȅ ƎƛǾŜ a general overview of modularity, Epic suggests the first step to
take is to set the scale of modularity, depending on the game or level will determine what scale to
use, according to Epic, if the player is to be passing through the environment then larger less
detailed modular assets can be created, if instead the level is inside of a building then the chunks can
be smaller such as walls, floors and roofs etc. instead of whole buildings modulated together.
Epic states that early on in the process ƛǘΩǎ very important to communicate between level designers
and artist to state the focus of the level. From this the artist should then work on the most useful
assets that can be immediate given to the level designers so they can start creating the level from
the different parts.

A recommendation given is if the team is confident that it could be beneficial to start with
placeholder parts that then can be swapped out if they are approximately the same shape and size,
possibly speeding up development.

The next step that Epic takes is to get the size of objects in comparison to the player, these are
things such as the height and width of assets such as walls and also to work out things such as how
high the player can jump, these numbers are important to all parties involved even people such as
animators, prototype testing can be also helpful here.

Epic continues on to mention
the grid, this is a large section in
comparison to the others, they
set up the grid in max and Maya
to match up with the game
engines grid, in this case, a
version of Unreal Tournament.
In UDK or UT3 assets have the
option of snapping to the grid,
this can be helpful when
creating a modular set, if the
grid was off it would be hard for
the level designer to perfectly
place each asset next to each
other and may also cause
graphical errors, however with
the assets on the grid they can
perfectly snap into position
relatively quickly and with no
side effects such as the
graphical errors mentioned
above.
If the same grid is used in the
games engine and modelling
package it helps planning and
synchronisation, as if it fits Fig 35

32 | P a g e

together in the modelling package ƛǘΩǎ guaranteed to work in the games engine. A good analogy
made by epic is that a modular setup is like Legos, from simple building blocks complex structures
can be made.

With the grid setup and working Epic make it clear that it should hardly ever be turned off as it can
cause problems even if the assets are on the grid in the modelling package, however they do
mention that the rotational grid is not as important to follow, especially for organic assets.
CG society member and
award winner Stefan
Morrell (2007) says this is
the most important aspect
of modularity especially at
the beginning. Fig 36

Epic makes an point that the grid used is best to be a power
ƻŦ нΣ ¦5Y ŘƻŜǎƴΩǘ ŀƭƭƻǿ ŀƴȅ ƻǘƘŜǊ ƎǊƛŘ ǎƛȊŜ ǘƘŀǘ ƛǎ not a power
of 2, however ƛǘΩǎ possible to divide the grid down, in their
example an object can still be made to a size of 1 unit as this
is still a power of 2 and as such on this grid level any object
that fits on the grid will fit on this lower grid regardless of
length, however ƛǘΩǎ also important to note that the smaller
the grid size the harder it becomes to place objects next to
each other. Fig 37

Epic continues the creation guide by explaining that modular assets are
not just objects that sit side by side, but could also be possibly put on top
of each other or underneath, an example given is of a candle on a
candelabra, with the top of the candelabra on the grid, placing the candle
itself will be easier as it will snap on the grid.

Some helpful tips are given on how to avoid problems , mainly issues
referring to repetitiveness, they suggest to mirror objects to reduce the
problem and that they are not just limited to mirroring side to side either,
assets have the potential to be mirrored in any axis. Text will not work
with mirroring however as the text itself would also be mirrored and be
backwards or up-side down.

Fig 38

The origin is also very important Epic explains, The origin of the model is important when keeping
things on the grid, if the origin is in a random place of the model then the model being on the grid
ŘƻŜǎƴΩt matter much, the origin is best located in the same place on every model, Epic suggests to
place it in the bottom right corner of all assets, this is to help with rotation and scaling, this allows
the corner to constantly be on the grid when scaling it to fit odd gaps, most modelling package keep
the origin of the model in the middle, if left here the assets would have to be realigned in the games
engine to work on the grid, somewhat defeating the point of being on the grid.

The origin for assets within UDK is the centre point of 3ds max and Maya, to get the objects working
how they should each asset has to be moved so the bottom right corner of the asset is exactly on the
world origin of the modelling application.

33 | P a g e

2.7.2 Paul Mader
Mader wrote an article for gamasutra (2005) on ways to speed up modularity, at the time of writing
ǘƘŜ ŘƻŎǳƳŜƴǘ ƘŜ ǿŀǎ ǿƻǊƪƛƴƎ ƻƴ ǘƘŜ ǳƴǊŜŀƭ о ŜƴƎƛƴŜΣ ǿƘƛƭŜ ǘƘŜ ŀǊǘƛŎƭŜ ŘƻŜǎƴΩǘ Ǝƻ ǘƘǊƻǳƎƘ ǘƘŜ ŜƴǘƛǊŜ
process of creating modular assets it does cover key points, these are the same that Epics UDN
mentioned above, however he expands on one key area, the pivot point.
For the most part he confirms what Epic stated, however for objects that are curved and rotate to
meet up with the next part like that shown below, the pivot point is placed in the centre of a
complete circle version of that particular model.

Fig 39

34 | P a g e

2.7.3 Lee Perry
Perry wrote an article for game developer magazine covering modularity, Perry at the time of writing
the article in 2002 was working for Epic Games, as such the content from the UDN website is similar
however there are a few more hints on how to improve modularity

One point that Perry expands on is planning, working with level designers to prioritise assets and
construct an asset list to include things such as props to landscapes, he suggest to do this after
organising the scale and grid, at this point ƛǘΩǎ also advisable to plan for end parts, Perry gives an
example of a modular river, there will need to be an asset that naturally makes the modularity finish,
for walls this could be a pillar or a door way if needed.

Following on from that, Perry states to start with the basics, at this point ƛǘΩǎ not advisable to start
making transition assets from area to area or complex junctions, leave these till later when the levels
are more developed.

Perry finishes up with ideas to overcome the repetitiveness of modularity, he explains that adding
accessories to things can go a long way to making places feel unique, for example adding broken
beams, or posts etc. to a castle hallway. Modularity can be taken further at this point, making props
from modular parts, this can help break the level up even more, having different props that can mix
and match together.

These accessory assets can also be used to conceal problems that may arise with modularity, they
could be strategically placed to cover thing such as holes or seams in the texture or seams where
objects may intersect such as natural rock formations.

Once all of the above is done, Perry then starts making the unique assets for the level, creating areas
that need to be different from the rest of the game, as these are more one off bits the grid is less
important here, however ƛǘΩǎ still a good idea to finish the edges up on the edge as it helps to fit the
objects together perfectly. Another factor to think about here is to look at the asset and see if it
ŎŀƴΩǘ ōŜ ōǊƻƪŜƴ ǳǇ ƛƴǘƻ ŎƘǳƴƪǎ ǘƻ ōŜ ǳǎŜŘ ǎƻƳŜǿƘŜǊŜ ŜƭǎŜ ŀǎ ǿŜll, this is maximising the use of all
objects.

Finally level assembly takes place, this is where all the benefits of the above come in, from the
different sets of assets a level now can be made. Due to the modularity of the assets there is a lot
more flexibility when constructing the levels, before requesting the addition of more assets, take a
look at the assets that have already been made, see if any of them could be used outside their main
purpose for whatever is needed. This could save a lot of time and speed production up overall with
the added bonus of creating a more unique environment from using pieces that were not expected
to be used.

35 | P a g e

2.7.4 Tyler Wanlass at 3DMotive

At 3dmotive.com Wanlass produced a video tutorial on how to create modular assets (2011), unlike
UDN and Perry he takes a different approach to creating modular assets.
Instead of starting with the 3d model first like a lot of artists do, he starts with the texture first in
Photoshop, again he uses the grid but instead of using it in max ƛǘΩǎ used in Photoshop first.

Using photo textures Wanlass breaks them up into their parts such as bricks, trim detail, windows
etc. and places these on the grid in Photoshop, using standard texture power of 2 size this then
forms the texture for the object, again the grid size can be set to any power of two but as before the
smaller it is the more tedious it becomes to place the objects. LǘΩǎ important to use the grid here as it
would have been used in the modelling packages, having the size of objects in proportion to each
other, while the actual size of the texture is down to the texture size allotted for the item, this is
then relative space in a modelling package and as such can be made bigger or smaller, but its best to
keep it all at the same scale.

Fig 40

This grid is then set up in the modelling package to match that of Photoshop. As the texture is
aligned to this grid it will then align to the grid of the modelling package.
A flat plane is then made to the size of the texture, so if the texture was a 1024x1024 pixel texture
then the plane would be 1024x1024 units in the modelling package, the material is then applied to
the plane.

36 | P a g e

This is now set up ready to model the pieces from, he starts by splitting the mesh into segments to
the same amount of that in tƘƻǘƻǎƘƻǇΩǎ grid, then breaking up the plane into separate sections
using the different parts of the texture.

Fig 41

37 | P a g e

This has now separated each part into objects that have perfect pixel ratio and perfectly align to the
grid. Using these parts the model can be created from using extrude, cut, bevel and other tools to
give this flat plane depth and 3D shape, while most of the UV map will be good, after altering the
mesh like the above causes some problems, the extruded parts do not have any new UV co-
ordinates and so have to be manually placed into position, this may be a little difficult as instead of
making the texture based on the model, the model has to be positioned in the best location, with
time this may not cause a problem however there is a chance it causes a seam in the model as these
are removed in creating the texture, as this normally happens on a corner though, depending on its
position in the level it might not be noticeable.

Fig 42

38 | P a g e

These parts are then exported to the game engine, due to the unit scale being setup the same as the
engine the assets automatically fits onto the game engine grid, making placement of the meshes the
same technique as with UDN and Perry above. Due to the parts being same size as each other such
as the door height, wall height and wall variants height ƛǘΩǎ easy to quickly swap them out and start
breaking up the relativeness of the level caused by modularity.

Fig 43

Fig 44

39 | P a g e

Fig 45

